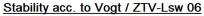

DC-NEWS

Program DC-Pile/Npw


DC-SOFTWARE

Analysis of piles in slopes e.g. for noise protection walls acc. to ZTV-Lsw o6

Display of pile and sliding block with slip joint

- Verification of piles in slopes, e.g. for noise protection walls acc. to ZVT-Lsw o6 with the approach of Vogt
- Iteration of the sliding block for the slip joint inclination θ with minimum safety
- Iteration of the pile length for verification of the equilibrium of moments
- Additional length \(\Delta\)t for verification of the horizontal equilibrium of forces
- Extended method for layered soil with different soil layer parameters
 φ. δ. γ
- Clearly arranged output with graphics and numerical verification
- Available as an addition for the program DC-Pile for bore piles and driven piles

Design value H load	H_d	=	54.00 kN
Design value moment	M_d	=	114.75 kNm
Weight	G	=	110.27 kN
Cohesion force	C _e	=	24.04 kN
Cohesion force	C,	=	46.35 kN
Shoulder friction	R,	=	44.49 kN
Cohesion force	C	=	205.71 kN
Earth resistance	$E_{p,k}$	=	376.66 kN
Friction angle	φ	=	27.87°
Wall friction angle	δ	=	11.95°
Inclination of slip surface	v	=	9.00°
Depth of center of rotation	t	=	3.47 m
Equilibrium force	$E_{p2,d}$	=	209.21 kN
Additional depth	∆t	=	0.69 m
Required pile length	L	=	4.16 m
Verification sum M: E_d = 302.13 kNm < R_d = 304.45 kNm			

*** Verification fulfilled ***

Output of the verification

